Section 1.4: Separable ODEs

So far, we have looked at first-order equations of the form \(\frac{dy}{dx} = f(x, y)\). Equations where \(\frac{dy}{dx} = f(x)\) can be solved by simple integration.

Definition: Separable Equation

An ODE \(\frac{dy}{dx} = f(x, y)\) is separable if \(f(x, y)\) can be expressed as a product of a function of \(x\) and a function of \(y\):

\[\frac{dy}{dx} = g(x) \cdot h(y)\]

Example: Find a general solution for \(\frac{dy}{dx} = -6xy\)

1. Separate the variables:

\[\frac{dy}{y} = -6x \, dx\]

2. Integrate both sides (assuming \(y \neq 0\)):

\[\int \frac{dy}{y} = \int -6x \, dx\]

\[\ln|y| = -3x^2 + C\]

3. Solve for \(y\):

\[|y| = e^C \cdot e^{-3x^2}\]

\[y = \pm e^C e^{-3x^2}\]

Let \(C' = \pm e^C\). Since \(e^C > 0\), initially we assume \(C' \neq 0\). The general solution is:

\[y = Ce^{-3x^2} \quad (C \neq 0)\]

Note: Is \(y = 0\) also a solution? If we plug \(y = 0\) into the ODE, we get \(0 = -6x(0)\), which is true. Therefore, \(y = 0\) is a solution (often called a "singular solution" or included in the general solution by allowing \(C=0\)).

Page 2

Natural Growth and Decay

The equation for natural growth or decay is a classic separable ODE:

\[\frac{dx}{dt} = kx \quad \text{or} \quad \frac{dy}{dx} = ky\]

Example: Newton's Law of Cooling

Model the temperature \(T(t)\) of an object over time given:

  • Ambient temperature \(A = 400^\circ\)
  • Constant \(k = \frac{3}{2}\)
  • Initial temperature \(T(0) = 60^\circ\)

Step 1: Set up the ODE

\[\frac{dT}{dt} = k(A - T) \implies \frac{dT}{dt} = \frac{3}{2}(400 - T)\]

Step 2: Separate and Integrate

\[\int \frac{dT}{400 - T} = \int \frac{3}{2} \, dt\]

\[-\ln|400 - T| = \frac{3}{2}t + C\]

Step 3: Solve for T

\[\ln|400 - T| = -\frac{3}{2}t - C\]

\[|400 - T| = e^{-C} e^{-\frac{3}{2}t}\]

\[400 - T = C e^{-\frac{3}{2}t}\]

\[T = 400 + C e^{-\frac{3}{2}t} \quad \text{(General Solution)}\]

Step 4: Solve for Particular Solution using \(T(0) = 60\)

\[60 = 400 + C e^{0}\]

\[60 = 400 + C \implies C = -340\]

Final Particular Solution:

\[T(t) = 400 - 340e^{-\frac{3}{2}t}\]

Example: Find an Implicit General and Particular Solution

Solve: \(\frac{dy}{dx} = \frac{4-2x}{3y^2-5}\) with initial condition \(y(1) = 3\).

1. Separate and Integrate:

\[\int (3y^2 - 5) \, dy = \int (4 - 2x) \, dx\]

\[y^3 - 5y + C_1 = 4x - x^2 + C_2\]

2. Implicit General Solution:

\[y^3 - 5y + x^2 - 4x = C\]

3. Find Particular Solution for \(y(1) = 3\):

Plug in \(x=1\) and \(y=3\):

\[3^3 - 5(3) + 1^2 - 4(1) = C\]

\[27 - 15 + 1 - 4 = 9 \implies C = 9\]

Final Particular Solution:

\[y^3 - 5y + x^2 - 4x = 9\]